High Voltage DC Contactor AEV20E Series 20A+/820VDC

Product Data Sheet

Features

HIGH CURRENT CARRY AND HIGH VOLTAGE

Inert gas filled arc chamber suitable for high voltage switching

COMPACT STRUCTURE, LOW NOISE

Small, low-profile designs with low noise while carrying or switching loads

SAFE FOR EXPLOSIVE ENVIRONMENTS

No arc leakage due to a hermetically sealed design

HIGH RELIABILITY DESIGN

Hermetic sealing creates a stable environment for contact resistance

NO SPECIFIC MOUNTING ARRANGEMENT

Mountable in any orientation without reduction of performance

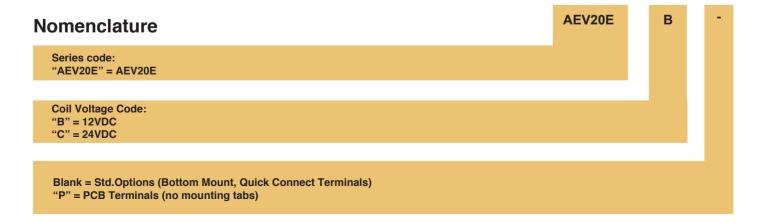
VARIOUS APPLICATIONS

Battery Disconnect, EV and Charging, Energy Storage Systems, Photo Voltaic, Power Control, Circuit protection and much more

PRE-CHARGE CONTACTOR

Specific Attributes

-Quick connect tabs or PCB mount


Sealing Type: Epoxy

Certification Information

1. Meet RoHS (2011/65/EU)

2. CE certified

Product Data Sheet

MAIN CONTACT				
Contact Arrangement		1 Form X (SPST-NO)		
Rated Operating Voltage		820 VDC		
Rated current		20A		
Short Term Current		30A (1h)		
Dielectric Withstanding Voltage (initial)	Between Open Contacts	2500 1mA 1min		
	Between Contacts to Coil	3000VAC 1mA 1min		
Insulation Resistance (Initial)	Terminal to Terminal	Min. 1000 M Ω@500 VDC		
	Terminals to Coil			
Contact Voltage Drop (initial)		≤50mV/10A		
Limit Breaking		30A@450VDC, 5 Cycle		

EXPECTED LIFE

5,000 Cycles

10,000 Cycles

75,000 Cycles

200,000 Cycles

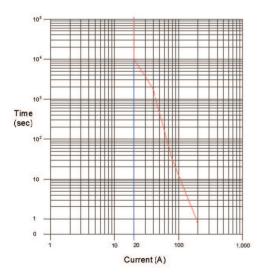
OPERATE / RELEASE TIME				
Operate Time	≤30ms @20°C			
Release Time	≤10ms @20°C			

ENVIRONMENTAL DATA				
Shock	Functional	196m/s² Sine half-ware pulse		
	Destructive	490m/s ² Sine half-ware pulse		
Operating Temperature		-40 to +85°C		
Humidity		5% to 85%RH		
Weight		0.11Lb (50g)		

COIL DATA				
Nominal Voltage	12VDC	24VDC		
Pick-up Voltage (23°C)	≤9VDC	≤18VDC		
Drop-out Voltage (23°C)	≥0.8 VDC	≥1.6 VDC		
Coil Power 20°C at Nominal Voltage	3W	3W		
Rated Coil Resistance ±10% (23°C)	48 Ω	192 <u>Ω</u>		

Current Carry Curve

Electrical Endurance (Make/


Electrical Endurance (Make/

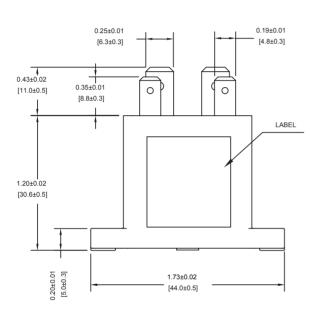
Break) 20A@450VDC

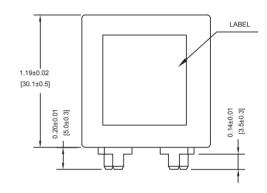
Break) 10A@450VDC Electrical Endurance (Make

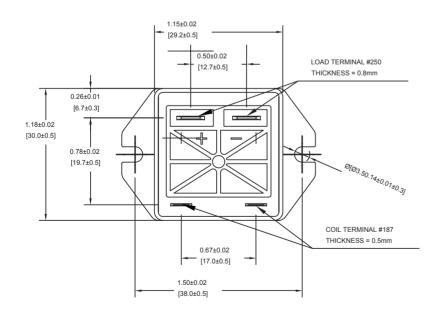
Only) 20A@450VDC

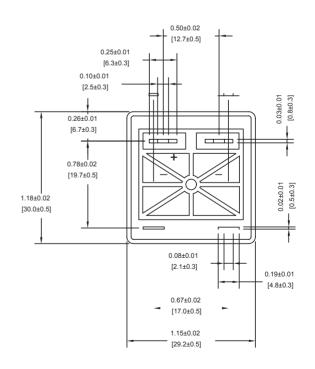
Mechanical Life

Note:


- 1. Do not meet dielectric & IR after the test.
- 2. ON:OFF= 1s:9s.
- 3. The ambient environment of application should not cause any dewing or icing inside the relay. Otherwise, the relay may fail to work consequently.


Product Data Sheet


Outline Dimensions : inches (mm)


AEV20E

AEV20E(P)

NOTE: There is a "+" and "-" mark on the cover of the product to show the polarity of the load, the coil has no polarity.

Product Data Sheet

Application Notes

- 1. Please use M3 screws for mounting.
 - Mounting torque: 0.8~1.1N. m.
- 2. Maximum allowable (push-on) force of the terminals is 49N.
- 3. PCB soldering parameters:
 - Manual soldering, 380±20°C, time (3~5)s.
 - Wave soldering 265±5°C, time (3~8)s.
- 4. Products with polarity marked on the load end must be used correctly according to the product marking. When the load connection polarity is reversed, the electrical characteristics promised in this manual cannot be guaranteed.
- 5. Avoid installing the contactor in a strong magnetic field environment (near transformers or magnets) and placing it near objects with heat radiation.
- 6. When continuous current is applied to the relay contacts, the Coil is turned on immediately after the power is cut off. At this time, as the Coil's temperature increases, the Coil's resistance will Coil increase, which will increase the pull-in voltage of the product, which may result in exceeding the rated Pull-in voltage. In this case, the following measures should be taken to reduce the load current: limit the continuous power-on time or use a coil voltage higher than the rated pull-in voltage.
- 7. When the voltage applied to both ends of the Coil exceeds the maximum allowable applied voltage, the coil temperature may rise, leading to coil damage and an inter-layer short circuit.
- 8. The rating in the contact parameters is the value at the time of the resistive load. When using an inductive load with L/R > 1ms, connect a surge current protection device in parallel with the inductive load. If measures are taken, the electrical life may be maintained, and the continuity may be suitable. Please consider sufficient margin space in the design.
- 9. Supply power must be greater than coil power, or it will reduce performance capability.
- 10. The load conductor must have the corresponding current load capacity and heat dissipation capacity (it is recommended to use wire with a minimum of 4mm2) to prevent overheating and affect the life of the contactor.
- 11. Do not use if dropped.
- 12. It is impossible to determine all the performance parameters of contactors in each specific application. Therefore, customers should choose the products matching them according to their own conditions of use. If in doubt, contact Altran; however, the customer will be responsible for validating that the products meet their application.
- 13. Altran reserves the right to make changes as needed. Customers should reconfirm the specification's contents or ask us to supply a new specification if necessary.