Features

HIGH CURRENT CARRY AND HIGH VOLTAGE
Inert gas filled arc chamber suitable for high voltage switching

COMPACT STRUCTURE, LOW NOISE

Small, low-profile design with low noise while carrying or switching loads

SAFE FOR EXPLOSIVE ENVIRONMENTS

No arc leakage due to a hermetically sealed design

HIGH RELIABILITY DESIGN

Hermetic sealing creates a stable environment for high voltage switching

NO SPECIFIC MOUNTING ARRANGEMENT
Mountable in any orientation without reduction of performance

VARIOUS APPLICATIONS

Battery disconnect, EV charging, energy storage systems, photovoltaics, power control, circuit protection and much more

Sealing Type: Epoxy/Resin
\checkmark Compact design, optional auxiliary contacts available
\checkmark Bi-directional options

Certification Information

1. Meet RoHS (2011/65/EU)
2. CE certified
3. UL approved

Nomenclature

Series code:
 "ALEV100" = ALEV100

Type Code:
Blank = Main Contacts (NO)
"NC " = Main Contacts (NC)

```
Coil Voltage Code:
"B" = 12VDC
"C" = 24VDC
"E" = 48VDC
```

Options (applied in this order):
Blank = Std. Options (Bottom Mount, Without Aux, Contact \& Polarized Load Terminals)
"A" = With Aux. Contact (SPST-NO)
"B" = With Aux. Contact (SPST-NC)
"S" = Side Mount Version
"N" = Non-Polar Load Terminals
"H" = 1000 Volts Switching Voltage

Performance Data for 900V Switching Option

MAIN CONTACT		
Contact Arrangement		1 Form X (SPST-NO)
Rated Operating Voltage		12-900 VDC
Continuous (Carry) Current		100A*1
Short Time Over current		200A (3 minutes) *2
Short Circuit Current		1,250A (1/2 cycle, 60 Hz)
Dielectric Withstanding Voltage (initial)	Between Open Contacts	2500VDC, $\leq 1 \mathrm{~mA}$
	Between Contacts to Coil	2,200Vrms, $\leq 1 \mathrm{~mA}$
Insulation Resistance (Initial)	Terminal to Terminal	New: Min 100 M Ω @ $500 V D C$ End of Life: $50 \mathrm{M} \Omega$ @ 500 VDC
	Terminals to Coil	
Voltage Drop (@100A)		$\leq 80 \mathrm{mV}$

EXPECTED LIFE	
Electrical Life	See table below
Mechanical Life	200,000 Cycles

Polarized Load

Voltage (VDC)	650	450
Current(A)	100	100
Electrical Life (cycles)	2,000	10,000

[^0]| OPERATE / RELEASE TIME | | |
| :---: | :---: | :---: |
| Operate Time Close (includes bounce) | | 25ms, Max. |
| Release Time | | 10ms, Max. |
| ENVIRONMENTAL DATA | | |
| Shock | Functional | $196 \mathrm{~m} / \mathrm{s}^{2}$
 Sine half-wave pulse |
| | Destructive | $490 \mathrm{~m} / \mathrm{s}^{2}$
 Sine half-wave pulse |
| Operating Temperature | | -40 to $+85^{\circ} \mathrm{C}$ |
| Vibration, Sine, Peak, 20G | | 80 to $2,000 \mathrm{~Hz}$ |
| Weight | | $0.42 \mathrm{Lb}(0.19 \mathrm{~kg})$ |

COIL DATA			
Nominal Voltage	12 VDC	24 VDC	48 VDC
Pickup voltage $\left(20^{\circ} \mathrm{C}\right)$	9.6 VDC	19.2 VDC	38.4 VDC
Dropout voltage $\left(20^{\circ} \mathrm{C}\right)$	0.8 VDC	1.6 VDC	3.3 VDC
Coil current $\left(20^{\circ} \mathrm{C}\right.$, voltage rating, nominal)	461 mA	250 mA	122 mA
Coil wattage $\left(20^{\circ} \mathrm{C}\right.$, voltage rating, nominal)	5.5 W	6 W	6 W
Rated coil resistance $\pm 5 \%\left(20^{\circ} \mathrm{C}\right)$	26Ω	96Ω	392Ω

AUX. CONTACT	
Aux. Contact Arrangement	1 Form A
Aux. Contact/Current Max.	2A@30VDC/3A@125VAC
Aux. Contact Current Min.	$100 \mathrm{mA@8V}$
Aux. Contact Resistance Max.	$0.4170 h m s @ 30 V D C /$ $0.150 o h m s @ 125 V A C ~$

Performance Data for ALEV100-H/1000V Switching Option

MAIN CONTACT		
Contact Arrangement		1 Form X (SPST-NO)
Rated Operating Voltage		1000 VDC
Rated Current		100A
Max. Short Circuit Current		1250A (1s)
Short Term Current		200A (3min)
Dielectric Withstanding Voltage (initial)	Between Open Contacts	4000VDC 1mA 1min
	Between Contacts to Coil	2200VAC 1mA 1min
Insulation Resistance (Initial)	Terminal to Terminal	Min $1000 \mathrm{M} \Omega$ @ 1000 VDC
	Terminals to Coil	
Contact Voltage Drop		Max. 5mV @10A
Limit breaking		1500A@450VDC,1 Cycle

EXPECTED LIFE	
Electrical Endurance (Make/ Break)	100A@750V 500 Cycles
Electrical Endurance (Break only)	63A@1000V 500 Cycles
Mechanical Life	200,000 Cycles

Current Carry Curve

COIL DATA		
Nominal Voltage	12 VDC	24 VDC
Max. Pick-up Voltage $\left(20^{\circ} \mathrm{C}\right)$	9.6 VDC	19.2 VDC
Min Drop-out Voltage $\left(20^{\circ} \mathrm{C}\right)$	0.8 VDC	1.6 VDC
Coil Current $\left(20^{\circ} \mathrm{C}\right)$	5.5 W	6 W
Coil Current $\left(20^{\circ} \mathrm{C}\right)$	5.5 W	6 W
Coil Power $\left(20^{\circ} \mathrm{C}\right)$	26Ω	96Ω

AUX. CONTACT	
Aux. Contact Arrangement	1 Form A
Aux. Contact Current Max.	2 A@30VDC/3A@125VAC
Aux. Contact Current Min.	$100 \mathrm{~mA} @ 8 \mathrm{~V}$
Aux. Contact Resistance Max.	$0.417 o h m s @ 30 V D C /$ 0.150 ohms@125VAC

Note:

1. Do not meet dielectric \& IR after the test.
2. $O N: O F F=0.6 \mathrm{~s}: 5.4 \mathrm{~s}$.
3. The ambient environment of the application should not cause any dewing or icing inside the relay. Otherwise, the relay may fail to work consequently.

Product Data Sheet

Outline Dimensions : inches (mm)

A. Bottom mount:

B. Side mount:

Notes:

1. The polarity of the product has the polarity of "+A1" and "-A2" on the outer cover, and the non-polar product has no polarity mark.
2. The wire size is 22 AWG.

Product Data Sheet

Application Notes

1. Be sure to use split washers to prevent nuts from loosening, all the terminals or conductors must be in direct contact with the contactor's terminals. Nut tightening torque is specified below. Exceeding the maximum torque can lead to product failure.
a. Contact torque: 30-40 lb.in (3.4-4.5 N.m) Max.
b. Mounting torque: $20 \mathrm{lb} . \mathrm{in}(2.3$ N.m)
2. Contact terminals are polarized so refer to drawing during connecting. We suggest using a varistor rather than diode as a surge protector.
3. Do not use if dropped.
4. Avoid installing in a strong magnetic field (close to a transformer or magnet), or near a heat source.
5. Electrical life:

Use per load capability and life cycle limits so as not to cause a function failure (treat the contactor as a product with specified life and replace it when necessary). It is possible to make parts burn around the contactor once operating failure occurs. It is necessary to take layout into account and to make sure power shall be cut off within 1 second.
6. Lifetime of internal gas diffusion:

The contactor is sealed and filled with gas, lifetime of gas diffusion is determined by temperature in contact chamber (ambient temperature + temperature generated by contact operation). Operate only in an ambient temperature from -40 to $+85^{\circ} \mathrm{C}$.
7. Coil drive power must be greater than coil power or it will reduce performance capability.
8. Avoid debris or oil contamination on the main terminals to optimize contact and avoid excess heat generation.

[^0]: Note:

 1. Do not meet dielectric \& IR after the test.
 2. $O N: O F F=1 \mathrm{~s}: 9 \mathrm{~s}$.
 3. The ambient environment of the application should not cause any dewing or icing inside the relay. Otherwise, the relay may fail to work consequently.
